TEACHING SCHEDULE

Academic Year: 2019-2020

Semester-III

Course Title: Oscillations, Waves and Sound

Course Code: PHY-E3

Class Room: B305 & B203

Timings: 10.30am-11.30pm, 12.30pm-1.30pm

Day: Tuesday, Wednesday, Thursday Course In-Charge: Ms. Pearl I. Oliveira

Lecture No.	Торіс	Content	References
1	1)Undamped free	Different type of equilibria (Stable,	Mathur 5.9 Page 246
	oscillation	unstable and neutral equilibrium)	
		Periodic oscillations and potential well	
2		Differential equation for simple	John Taylor 5.2 Page
		harmonic oscillator and its solutions.	163
		Energy of the harmonic oscillator	
3		Examples of simple harmonic	Mathur 7.7 Page 329
		oscillations: Simple pendulum	Subrahmanyam 1.15
			Page 34
4		Compound Pendulum	
5		Compound Pendulum	
6		Spring and mass system, torsional	Mathur 7.7 Page 336
		pendulum	
7		Bifilar oscillations, Helmholtz resonator	Mathur 7.7 Page 339
8		Superposition of two simple harmonic	Subrahmanyam 2.2
		motions of the same frequency along	Page 99
		the same line. Superposition of two	
		mutually perpendicular simple harmonic	
		vibrations of the same frequency.	
9		Superposition of two mutually	Subrahmanyam 2.26
		perpendicular simple harmonic	Page110
		vibrations and having time periods in	
		the ratio 1:2. Uses of Lissajous' figures.	
10		CA-I WT -I	
11		PROBLEMS	
12		PROBLEMS	
13	(A) D	CA-II ONBT-I	T 1 77 1
14	2) Damped	Introduction. Differential equation of	John Taylor

	Oscillations	damped harmonic oscillator and its solution,	
15		Discussion of different cases (Strong,	Mathur
13		weak and Critical damping).	Manui
16		Contd.	
17			Mathur
1/		Logarithmic decrement. Energy	Manini
18	1	equation of damped oscillations	Mathan
		Power dissipation. Quality factor	Mathur
19		PROBLEMS PROPLEMS	
20 21		PROBLEMS CA-II ONBT-II	
22	2) Driven Domnad		John Taylor
22	3) Driven Damped Oscillations	Introduction, Differential equation of	John Taylor
	Oscillations	forced oscillation and its solution	
22		(transient and steady state).	T 1 70 1
23		Continued	John Taylor
24		Resonance. Width of the resonance; the	Mathur
25		Q factor.	N .1
25		The phase at resonance. Velocity	Mathur
		resonance.	
26		PROBLEMS	
27		PROBLEMS	
28		CA-II ONBT-II	
29		CA-I WT -II	
30	4) Waves and	Transverse vibrations in strings.	Khanna
	Sound	Velocity of longitudinal waves in gases.	
		Newton's formula for velocity of sound.	
31		Velocity in a homogeneous medium.	Khanna
		Laplace's correction.	
32		Kundt's tube-determination of velocity	Khanna
		of sound in a gas and in solids. Intensity	
		level and Bel and Decibel.	
33		Production and detection of Ultrasonic	Subrahmanyam
		waves and its applications	,
		and its applications	
34		Continued	
35		PROBLEMS	
36		CA-III MCQ-I	
37	5) Doppler Effect	Explanation of Doppler effect in sound.	Subrahmanyam
		Observer in rest and source in motion.	
		Source at rest and observer in motion.	
38		When both source and observer are in	Subrahmanyam
		motion. Effect of wind velocity.	
39		Doppler effect in light. Applications of	Subrahmanyam
		Doppler effect.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
		Doppier circu.	
40		PROBLEMS	
		TROBLEMA	1

41	PROBLEMS	
42	CA-III MCQ-II	
43	Discussion of SEE	
44	Revision (Problem Solving)	
45	Revision (Problem Solving)	